Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography.
نویسندگان
چکیده
Cerebral edema develops in response to a variety of conditions, including traumatic brain injury and stroke, and contributes to the poor prognosis associated with these injuries. This study examines the use of optical coherence tomography (OCT) for detecting cerebral edema in vivo. Three-dimensional imaging of an in vivo water intoxication model in mice was performed using a spectral-domain OCT system centered at 1300 nm. The change in attenuation coefficient was calculated and cerebral blood flow was analyzed using Doppler OCT techniques. We found that the average attenuation coefficient in the cerebral cortex decreased over time as edema progressed. The initial decrease began within minutes of inducing cerebral edema and a maximum decrease of 8% was observed by the end of the experiment. Additionally, cerebral blood flow slowed during late-stage edema. Analysis of local regions revealed the same trend at various locations in the brain, consistent with the global nature of the cerebral edema model used in this study. These results demonstrate that OCT is capable of detecting in vivo optical changes occurring due to cerebral edema and highlights the potential of OCT for precise spatiotemporal detection of cerebral edema.
منابع مشابه
Attenuation of Focal Cerebral Ischemic Injury Following Post-Ischemic Inhibition of Angiotensin Converting Enzyme (ACE) Activity in Normotensive Rat
Background: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain inf...
متن کاملFunctionalized fullerene materials (fullerol nanoparticles) reduce brain injuries during cerebral ischemia-reperfusion in rat
Aim: Oxidative stress plays a crucial role in the pathophysiology of ischemic stroke. Since water-solublefullerene derivatives act as the potent scavenger of oxygen free radicals in biological systems, we aimedto investigate the possible protective effects of fullerol nanoparticles on brain infarction and edema intransient model of focal cerebral ischemia in rat.Materials & Methods: Experiment ...
متن کاملQuantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.
This paper describes a novel optical method for label-free quantitative imaging of cerebral blood flow (CBF) and intracellular motility (IM) in the rodent cerebral cortex. This method is based on a technique that integrates dynamic light scattering (DLS) and optical coherence tomography (OCT), named DLS-OCT. The technique measures both the axial and transverse velocities of CBF, whereas convent...
متن کاملDepth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography.
Co-registered optical coherence tomography (OCT) and video microscopy of the rat somatosensory cortex were acquired simultaneously through a thinned skull during forepaw electrical stimulation. Fractional signal change measured by OCT revealed a functional signal time course corresponding to the hemodynamic signal measurement made with video microscopy. OCT can provide high-resolution, cross-se...
متن کاملAbnormal cerebral blood flow in methamphetamine abusers assessed by brain perfusion single emission computed tomography
Introduction:Amphetamines are central nervous system (CNS) stimulant substances and amphetamine abuse is considered a growing problem in our country. Previous studies revealed destructive effects of amphetamines on metabolism, perfusion and structure of brain. The aim of current study was evaluating regional cerebral blood flow (rCBF) disturbances in methamphetamine (MA) abuser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurophotonics
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2014